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Abstract Docking and three dimensional quantitative-
structure activity relationship (3D-QSAR) studies were
performed on acetohydroxy acid synthase (AHAS) inhibitor
sulfonylurea analogues with potential herbicidal activity. The
3D-QSAR studies were carried out using shape, spatial and
electronic descriptors along with a few structural parameters.
Genetic function approximation (GFA) was used as the
chemometric tool for this analysis. The whole data set
(n=45) was divided into a training set (75% of the data
set) and a test set (remaining 25%) on the basis of the
K-means clustering technique on a standardised topological,
physicochemical and structural descriptor matrix. Models
developed from the training set were used to predict the
activity of the test set compounds. All models were validated
internally, externally and using the Y-randomisation tech-
nique. Docking studies suggested that the molecules bind
within a pocket of the enzyme formed by some important
amino acid residues (Met351, Asp375, Arg377, Gly509,
Met570 and Val571). In QSAR studies, molecular shape
analysis showed that bulky substitution at the R1 position may
enhance AHAS inhibitory activity. Charged surface area
descriptors suggested that negative charge distributed over a
large surface area may enhance this activity. The hydrogen
bond acceptor parameter supported the charged surface area
descriptors and suggested that, for better activity, the number
of electronegative atoms present in the molecule should be
high. The spatial descriptors show that, for better activity, the
molecules should possess a bulky substituent and a small
substitution at the R2 and R3 positions, respectively.
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Introduction

Agriculture has played a crucial role in the development of
human civilisation. It is widely believed that domestication
of plants allowed humans to settle in a place and give up
their previous migrant lifestyle. Until the industrial revolu-
tion, the majority of the human population laboured in
agriculture. Development of agricultural techniques and the
constituents of fertilisers have steadily increased agricultur-
al productivity. However, this productivity may be greatly
diminished under threats from certain agents such as weeds,
fungus, pests, insects, etc., of which weeds have played a
key role. Weeds are generally considered as unwanted
plants in human-made settings like agricultural areas,
gardens, etc. because they can (1) restrict the amount of
light available to the desirable plants, (2) take nutrients
from the soil leaving the desired plant unfed and making it
less productive, (3) spread plant pathogens that infect and
diminish the quality of the crop [1]. Thus, control measures
are required to protect agricultural products from the above-
mentioned harmful threats either chemically or biologically
(genetically). Genetic control is very complicated and
expensive, making chemical control by herbicides the
method of choice.

Herbicides have been broadly classified into two groups
according to their activity: (1) contact herbicides—destroy
only the plant tissue in contact with the chemical; and (2)
systemic herbicides—chemicals translocated through the
plant circulation system, either from foliar application down
to the roots, or from soil application up to the leaves [2].
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Rational design strategies, especially in silico-based
approaches, have emerged as a promising alternative or
complementary tool towards the effective screening of
potential chemicals. In silico approaches include, for example,
quantitative structure-activity relationship (QSAR) modelling
techniques, which are increasingly attracting the attention of
scientists in the chemical as well as the pharmaceutical
industries [3–8]. Computer-aided chemical design has been
applied extensively in the area of modern drug discovery,
ecotoxicological modelling and design of agrochemicals for
its high efficiency in the design of new compounds and
optimisation of lead compounds, thus saving both time
and economic costs in large-scale experimental synthesis and
biological tests [9]. QSAR helps us to understand structure–
activity relationships (SAR) in a quantitative manner and is
one of the most important applications of chemometrics,
providing information useful for the design of new com-
pounds acting on specific targets. QSAR attempts to find a
consistent relationship between biological activity or toxicity
and molecular properties. Thus, QSAR models can be used
to predict the activity of new compounds.

QSAR models have been reported by different groups of
researchers for agrochemicals such as herbicides, fungicides
and insecticides. Peng et al. [10] performedmolecular docking
and three-dimensional (3D) QSAR studies on the herbicidal
activity of 1-(substituted phenoxyacetoxy) alkylphosphonates
that bind to the E1 component of pyruvate dehydrogenase.
Zhang et al. [11] developed a density functional theory
(DFT)-based QSAR study of protoporphyrinogen oxidase
inhibitors for the class of phenyl triazolinones. Duggleby et
al. [12] performed comparative molecular field analysis
(CoMFA) and comparativemolecular similarity indices anal-
ysis (CoMSiA) analyses of a new family of sulfonylurea
herbicides. Yang et al. [13] performed docking studies of α-
hydroxy-substituted 3-benzylidenepyrrolidene-2,4-dione
derivatives against plant 4-hydroxy phenyl pyruvate dioxy-
genase enzyme, and have also reported classical QSAR.

Xi et al. [14] recently synthesised 45 sulfonylurea
derivatives and also performed a DFT-based QSAR study
of sulfonylurea analogues for herbicidal activity using
general quantum chemical descriptors. Sulfonylurea herbi-
cides inhibit the plant enzyme acetohydroxy acid synthase
(AHAS, E.C. 2.2.1.6). AHAS belongs to the family of
enzymes using the co-factor thiamin diphosphate (ThDP).
AHAS—the key enzyme in branched-chain amino acid
metabolism in plants, fungi, bacteria, and archaea—catalyses
the condensation of pyruvate with either another pyruvate
molecule or, alternatively, 2-ketobutyrate, yielding acetolac-
tate or acetohydroxybutyrate as precursors in the biosynthesis
of valine, leucine, and isoleucine. A number of different
studies have collectively [15] suggested that the herbicide
sulfonylurea binds to the AHAS enzyme near thiamine
pyrophosphate and flavin adenine dinucleotide (FAD), with

its binding site overlapping that of the pyruvate (substrate for
biosynthesis of amino acids) binding domain. Sulfonylurea
herbicides must be accommodated on AHAS at a site distinct
from that of the substrate or co-factor binding sites. In 2006,
Duggleby et al. [16] reported the crystal structure of AHAS
from Arabidopsis thaliana complexed with the sulfonylurea
herbicide metsulfuron methyl.

In this paper, we report docking of 45 sulfonylurea
derivatives into the AHAS enzyme from A. thaliana to
explore important interactions between the ligands and the
active site of the AHAS enzyme. Furthermore, we
performed 3D QSAR analysis to obtain a clearer insight
into the SAR of this class of compounds.

Materials and methods

In the present study, 45 sulfonylurea derivatives were
employed, including 2 commercial herbicides (compounds
12, 17) and 43 derivatives [14]. Structures and experimental
inhibitory activities of the compounds against wild-type
Escherichia coli AHAS isoenzyme II [14] are listed in Table 1.
There are four regions (R1, R2, R3 and R4) of structural
variations in these compounds. The present QSAR study
explores the impact on AHAS inhibitory activity of substitu-
tional variations at these four positions. The range of AHAS
inhibitory activity values is quite wide (4.93 log units).

Docking study

Molecular docking is an application wherein molecular
modelling techniques are used to predict how a protein
(enzyme) interacts with small molecules (ligands) [17]. The
ability of a protein (enzyme) to interact with small
molecules plays a major role in the dynamics of that
protein, which may enhance/inhibit its biological function.
In the current study, we performed docking of 45
sulfonylurea derivatives into the active site of the enzyme
AHAS. The crystal structure of AHAS (E.C. 2.2.1.6,
1YHY.pdb) was obtained from the RCSB protein data bank
(http://www.pdb.org). We have worked on the AHAS
enzyme complexed with metsulfuron methyl isolated from
A. thaliana by Duggleby et al. [16]. The AHAS enzyme has
been co-crystallised with flavin adenine dinucleotide
(FAD). The 667-amino-acid AHAS enzyme is complexed
with a sulfonylurea herbicide, metsulfuron methyl. We
performed the docking studies using LigandFit in the
Receptor-Ligand Interactions protocol section of Discovery
Studio 2.0 [18]. An initial pretreatment for both ligands and
the AHAS enzyme was performed. For ligand preparation,
all duplicate structures were removed and options for
ionisation change, tautomer generation, isomer generation,
Lipinski filter and 3D generator were set true. For enzyme
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Table 1 Structural features and acetohydroxy acid synthase (AHAS) inhibitory activity (observed and calculated) of 45 sulfonylurea derivatives

S

N
H

N
H

N

NO

O

O

R1

R2

R3

R4

Compound Substitutions Activity

Observed [14] Calculated

R1 R2 R3 R4 M1b M2b

1 Cl CH3 H H 5.22 4.85 5.13

2 Cl OCH3 H OCH3 6.93 6.52 6.66

3 Cl OCH3 Br OCH3 5.52 5.47 6.06

4 Cl OCH3 Br Cl 4.78 4.99 4.16

5a Cl CH3 Br CH3 4.67 3.97 4.36

6a Cl CH2OC2H5 Br H 4.27 4.78 4.17

7 Cl CH2OOCCH3 Br H 4.7 5.08 5.56

8 COOEt CH3 H H 6.69 6.90 6.29

9 COOEt CH2OC2H5 Br H 6.51 6.92 6.69

10 COOEt OCH3 Br OCH3 7.03 7.26 6.64

11 COOEt OCH3 H OCH3 9.2 9.12 8.82

12 COOEt OCH3 H Cl 8.34 8.05 7.66

13 COOEt CH3 H Cl 7.09 7.51 7.58

14 COOEt OCH3 Br Cl 6.8 6.78 5.84

15 COOEt CH2OOCCH=CH2 Br H 7.11 6.74 6.67

16 COOMe OCH3 Br OCH3 6.31 6.76 6.31

17 COOMe CH3 H CH3 7.69 6.83 7.38

18 COOMe OCH3 H OCH3 8.63 8.67 8.48

19 COOMe OCH3 H Cl 7.77 7.88 7.38

20a COOMe CH2OCH2CH=CH2 Br H 6.04 5.62 6.53

21 COOMe CH2OOCCH3 Br H 5.2 5.30 5.54

22 COOMe OCH3 H H 6.66 7.41 7.60

23a NO2 CH2OC2H5 Br H 4.68 5.58 4.99

24a NO2 CH3 Br CH3 4.8 4.74 5.14

25 NO2 OCH3 Br OCH3 5.3 5.61 5.74

26a NO2 OCH3 H OCH3 8 7.46 7.97

27a NO2 OCH3 H H 5.82 6.49 7.25

28 NO2 CH2OOCCH=CH2 Br H 5.17 5.39 5.30

29a OCH2CH2Cl OCH3 H OCH3 7.46 7.14 8.05

30 OCH2CH2Cl CH3 H Cl 6.58 6.06 7.48

31 OCH2CH2Cl CH2SCN Br H 5.58 5.01 5.45

32 OCH2CH2Cl CH2OC2H5 Br H 5.14 5.67 5.73

33 OCH2CH2Cl CH2OCH2CH=CH2 Br H 5.31 5.16 5.75

34 OCH2CH2Cl OCH3 Br OCH3 5.45 5.37 5.65

35 OCH2CH2Cl OCH3 Br Cl 4.77 4.66 4.18

36 Cl CH3 H CH3 4.71 5.13 4.65

37a Cl CH2OCH3 Br H 5.66 4.61 6.03
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preparation, the whole enzyme (after preparing the ligand)
was selected and hydrogen atoms were added to it. The pH of
the protein was set within the range 6.5–8.5. We then defined
the AHAS enzyme as the receptor and the active site was
selected based on the ligand binding domain of metsulfuron
methyl. The preexisting ligand (metsulfuron methyl) was
then removed and freshly prepared ligand (sulfonylurea
derivative) prepared by us was used for docking. LigandFit
was then chosen from the Receptor–Ligand Interaction
section of the program. We used preprocessed receptor and
ligand as inputs. PLP1 was selected as the energy grid. The
conformational search of ligand poses was performed by the
Monte Carlo trial method. The torsional step size for polar
hydrogen was set at five. Docking was performed taking
electrostatic energy into account. The maximum internal
energy was set at 10,000 cal. Pose saving and interaction
filters were set as default. Fifty poses were docked for each
compound. During the docking procedure, no attempt was
made to minimise the ligand–enzyme complex (rigid
docking). After completion of docking, the docked enzyme
(protein–ligand complex) was analysed to investigate the

type of interactions. The 50 docking poses saved for each
compound were ranked according to their dock score
function. The pose (conformation) having the highest dock
score was selected for further analysis.

Descriptors for QSAR study

We also performed QSAR studies on the data set with
three-dimensional (shape, spatial and electronic) descriptors
along with a few structural descriptors. The categorical list
[19] of descriptors used in the development of QSAR
models is shown in Table 2.

Cluster analysis

The ultimate target of any QSAR modelling is that the
developed model should be strong enough to be capable of
making accurate and reliable predictions of biological
activities of new compounds. The models were cross-
validated using the leave-one-out (LOO) method. However,
internal validation does not guarantee that the model will

Table 1 (continued)

Compound Substitutions Activity

Observed [14] Calculated

38 Cl CH2SCN Br H 4.63 4.75 4.79

39 COOEt CH2OCH3 Br H 6.7 6.28 6.96

40 COOEt CH3 Br CH3 6.78 6.39 6.35

41 COOMe CH3 Br CH3 5.94 5.73 6.17

42a NO2 CH2OCH3 Br H 5.54 5.04 4.79

43 NO2 OCH3 H Cl 7.69 6.92 6.92

44a NO2 CH2OOCCH3 Br H 4.53 5.12 4.76

45 OCH2CH2Cl CH3 H H 5.33 6.08 5.71

a Test set members
b See Eqs. M1 and M2 below

Table 2 Categorical list of descriptors used in the development of quantitative structure-activity relationship (QSAR) models

Category of descriptors Name of the Descriptors

Shape DIFFV, COSV, Fo, NCOSV, ShapeRMS

Electronic Dipole-mag, Sr

Spatial RadOfGyration, Jurs_SASA, Jurs_PPSA_1, Jurs_PNSA_1, Jurs_DPSA_1, Jurs_PPSA_2,
Jurs_PNSA_2, Jurs_DPSA_2, Jurs_PPSA_3, Jurs_PNSA_3, Jurs_DPSA_3, Jurs_FPSA_1,
Jurs_FNSA_1, Jurs_FPSA_2, Jurs_FNSA_2, Jurs_FPSA_3, Jurs_FNSA_3, Jurs_WPSA_1,
Jurs_WNSA_1, Jurs_WPSA_2, Jurs_WNSA_2, Jurs_WPSA_3, Jurs_WNSA_3, Jurs_RPCG,
Jurs_RNCG, Jurs_RPCS, Jurs_RNCS, Jurs_TPSA, Jurs_TASA, Jurs_RPSA, Jurs_RASA,
Shadow_XY, Shadow_XZ, Shadow_YZ, Shadow_XYfrac, Shadow_XZfrac, Shadow_YZfrac,
Shadow_nu, Shadow_Xlength, Shadow_Ylength, Shadow_Zlength, Area, Vm, Density, PMI_mag

Structural Rotlbonds, Hbond acceptor, Hbond donor
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perform well on a new set of data. In most cases, an
appropriate external data set is not available for prediction
purposes. Hence, the whole data set is divided into a training
set and a test, or external evaluation, set. In the present study,
the models developed from the training set (subset of the
original set) were validated externally using a test set. The
predictive capacity of a model for new chemical entities is
influenced by the chemical nature of the training set molecules
used for development of the model [20–22]. In reality, the test
set molecules will be predicted well when these molecules are
structurally very similar to the training set molecules, the
reason being that the model has considered all features
common to the training set molecules. There are different
techniques available for dividing the data set into training and
test sets, e.g. statistical molecular design, self-organising map,
clustering, Kennard–Stone selection, sphere exclusion, etc.
[23]. In the present case, we used the clustering technique as
the method for training set selection. Cluster analysis [24] is
a technique whereby objects can be arranged into groups.

In the present work, the total data set (n=45) was
divided into training set (n=34) and test (external evalua-
tion) set (n=11; 75% and 25%, respectively, of the total
number of compounds) based on clusters obtained from K-
means clustering [25] applied to a standardised topological,
physicochemical and structural descriptor matrix. The
whole data set was clustered into three subgroups, from
each of which were selected approximately 25% of
compounds as members of the test set. The serial numbers
of compounds in different clusters are shown in Table 3.

Molecular shape analysis

Molecular shape analysis (MSA) was used as a 3D QSAR
technique. In our study, the following steps were used to
perform MSA [26]:

1) Conformational analysis. The first operation in MSA is
the conformational analysis of the analogues. The
conformers were generated with the “optimal search
method” option followed by energy minimization.

2) Hypothesizing an active conformer. The aim of this step is
to select a structure that is present in the rate-limiting step

for the activity in a biological reaction. The minimum-
energy conformer (global minimum) of the most active
compound 11 was taken as the active conformer.

3) Selection of a candidate shape reference compound.
The shape reference compound is the molecule that is
used when shape descriptors are calculated. MSA
compares all other molecules to the shape reference
compound (global minimum of compound 11) and
provides information about each comparison.

4) Performing pair-wise molecular superposition. Each
study molecule was aligned to the shape reference
compound using the maximum common sub graph
(MCSG) method to calculate the shape descriptors.

5) Measurement of molecular shape commonality. After
alignment, various shape descriptors, based on relative
shape similarity with the shape reference compound,
were calculated for each study molecule.

6) Other molecular descriptors. Determination of other
molecular features by calculating spatial, structural and
electronic parameters was done in addition to the shape
descriptors.

7) Construction of QSAR. QSAR equations were gener-
ated using genetic function approximation (GFA) with
linear option as the statistical tool.

For comparison, we have performed another MSA using
the docked conformations of the ligands instead of using
global energy minimum conformers.

Genetic function approximation—multiple linear regression

Genetic algorithms are derived from an analogy with the
evolution of DNA [27]. The GFA algorithm was initially
anticipated by (1) Holland’s genetic algorithm, and (2)
Friedman’s multivariate adaptive regression splines
(MARS) algorithm. In this algorithm, a model is repre-
sented as a one-dimensional string of bits. A distinctive
feature of GFA is that it produces a population of models
(e.g. 100), instead of generating a single model as do most
other statistical methods. Genetic algorithm methods lead to
models superior to those developed using stepwise regres-
sion technique because they select the basis functions
genetically. Descriptors selected by this algorithm were
subjected to multiple linear regression for generation of
models. A “fitness function” or lack of fit (LOF) is used to
estimate the quality of an individual or model, so that the best
individual or model receives the best fitness score. The error
measurement term LOF is determined by the following
equation:

LOF ¼ LSE

1� cþd*p
M

� �2 ð1Þ

Table 3 Serial numbers of compounds under different clusters

Cluster number Serial number of compounds

1 1,2,5,30,36,37,45

2 8,11,12,13,17,18,19,22,26,27,29,43

3 9,10,15,20,21,28,33,39,44

4 3,4,7,14,16,23,24,25,34,35,40,41,42

5 6,31,32,38
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In Eq. 1, c is the number of basis functions (other than
constant term); d is a smoothing parameter (adjustable by
the user); M is the number of samples in the training set;
LSE is the least squares error and p is the total number of
features contained in all basis functions.

Once models in the population have been rated using the
LOF score, the genetic cross-over operation is repeatedly
performed. Initially, two good models are probabilistically
selected as parents and each parent is cut randomly into two
pieces and a new model (child) is generated using a piece
from each parent. After many mating steps, i.e. genetic
crossover type operations, the average fitness of models in
the population increases as good combinations of genes are
discovered and spread through the population. This
procedure can build not only linear models but also
higher-order polynomials, splines and Gaussians. In the
present work, linear terms have been used. For the
development of GFA models, we used Cerius2 version
4.10 [19]. The mutation probabilities were kept at 50% with
5,000 iterations. Smoothness (d) was kept at 1.00. Initial
equation length value was selected as four and the length of
the final equation was not fixed.

Validation methods

The robustness of the models should be verified by using
different types of validation criteria. For validation of
QSAR models, four strategies [28] are usually adopted:
(1) internal validation or cross-validation, (2) validation by
dividing the data set into training and test compounds, (3)
data randomisation or Y-scrambling, and (4) true external
validation by application of the developed model to new
external data. In the case of the present data set, due to the
lack of a true external evaluation set, the total data set was
divided into an internal evaluation (training) set and an
external evaluation (test) set. Thus, we performed only the
first three validation techniques. Most QSAR modelling
methods implement the LOO or leave-many-out (LMO)
cross-validation procedures, which are internal validation
techniques. The outcome from the cross-validation proce-
dure is cross-validated R2 (LOO-Q2 or LMO-Q2), which is
used as a criterion of both robustness and of the predictive
ability of the model. In this paper, we used the LOO
validation method as the internal validation tool. The cross-
validated squared correlation coefficient R2 (LOO-Q2) is
calculated according to this equation:

Q2 ¼ 1�
P

Yobs trainingð Þ � Ypred trainingð Þ
� �2
P ðYobs trainingð Þ � Y trainingÞ2

ð2Þ

In Eq. 2, Y training represents the average activity value of the
training set while Yobs(training) and Ypred(training) represents the

observed and predicted activity values of training set compounds,
respectively. Often, a high Q2 value (Q2>0.5) is considered as a
proof of the high predictive ability of the model [29].

Models are generated based on training set compounds
and predictive capacity of the models is judged based on
the predictive R2 (Rpred

2) values calculated according to the
following equation [30]:

R2
pred ¼ 1�

P
Yobs testð Þ � Ypred testð Þ
� �2

P
Yobs testð Þ � Y training

� �2 ð3Þ

In Eq. 3, Ypred(test) and Yobs(test) indicate predicted and
observed activity values, respectively, of the test set
compounds and Y training indicates the mean activity value
of the training set compounds. The value of Rpred

2 for an
acceptable model should be more than 0.5.

Further statistical significance of the relationship between
AHAS inhibitory activity and the descriptors was obtained
from randomisation (Y-randomisation) of the developed
models. This test was carried out by repeatedly scrambling
the activity values to generate QSARmodels, and comparing
the resulting scores with the score of the original QSAR
model generated from non-randomised activity values. If the
score of the non-random QSAR model is significantly better
than that of the random models then that model should be
considered as a statistically robust model [31].

Software

MINITAB [32] was used for linear regression and partial
least squares methods. Cerius2 version 4.10 [19] was used
for MSA and GFA analyses. SPSS [33] was used for cluster
analysis and deriving the intercorrelation matrix of the
descriptors. LigandFit of the receptor-ligand interactions
protocol available under Discovery Studio 2.0 [18] was
used to dock the inhibitor molecules into the active site of
the enzyme AHAS.

Results and discussion

The results obtained from docking and QSAR studies are
described below.

Docking

In the present study, to understand the interactions between
AHAS and its inhibitors, and to explore their binding mode,
a docking study was performed using the LigandFit
function available in Discovery Studio 2.0 [18]. These
docking studies yielded crucial information concerning the
orientation of the inhibitors in the binding pocket of AHAS.
Ligand–enzyme interaction analysis shows that Met351,
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Asp375, Arg377, Gly509, Met570 and Val571 are the most
important residues present at the active site and are the
main contributors to the receptor–ligand interaction. It has
been observed that, for better AHAS inhibitory activity,
four amino acid residues (Met351, Arg377, Met570 and
Val571) should optimally interact with the substituted
sulfonylurea derivatives. In the case of compound 36
(Fig. 1), the four amino acid residues mentioned above
are in close vicinity to the molecule. The methyl (–CH3)
substitution at the R2 position and the adjacent nitrogen
atom of the pyrimidine ring system form ten intramolecular
bumps with the chlorine atom at the R1 position and the
hydrogen atoms present in the phenyl ring. These bumps
may disturb the optimal position of the molecule in the
pocket and thus hinder the interaction with the amino acid
residues; thus the herbicidal activity of compound 36 is
poor (4.71). In compound 11 (Fig. 2), two intramolecular
bumps are present between ethyloxy carbonyl (–COOEt) at
the R1 position and the oxygen atom of the sulfonyl
(O=S=O) group. However, three hydrogen bonds are
formed between the amino acid Arg377 and the oxygen
atom of the sulfonyl group, the oxygen atom of the
methoxy group at the R2 position and the nitrogen atom
present in the close vicinity of that methoxy group,
respectively. These hydrogen bonds help the molecule to
fit into the cavity of the enzyme. The AHAS inhibitory
activity (9.20) is very high due to these three hydrogen
bonds. In compound 16 (Fig. 3), four intermolecular
hydrogen bonds form between the inhibitor molecule and
the amino acid residue Arg377. But the bromine atom
present at the R3 position forms one intramolecular bump
with the hydrogen atom of the methoxy group at R2 and
three intermolecular bumps with the amino acid Met570.
Although the hydrogen bonds help to enhance the binding

potential, the bumps disfavour the binding capability and
the herbicidal activity is only of intermediate level (6.31).
In compound 24 (Fig. 4), Arg377 forms two hydrogen
bonds as well as two bumps with the inhibitor molecule.
The bromine atom present at the R3 position has formed
three bumps with the amino acid Met570. There are also
four more intramolecular bumps which preclude the
molecule obtaining optimum binding and thus compound
24 cannot fit well into the pocket of the AHAS enzyme. As
a consequence, the herbicidal activity (4.80) of the
molecule is very much reduced. In compound 18 (Fig. 5),
the hydrogen atom of the methoxy group present at the R4

position has made a bump with the important amino acid
Val571. But, Arg377 has formed four hydrogen bonds with
the electronegative atoms present in the inhibitor molecule
and the other two important amino acid residues (Met351,
Met570) are also present in the close vicinity of the
molecule. The negative effect of one bump has been
overcome by the favourable effect of four hydrogen bonds,
which favour the fitting of the molecule in the cavity of the
AHAS enzyme. Thus, the AHAS inhibitory activity (8.63)
of compound 18 is high. In compound 6 (Fig. 6), the

Fig. 3 Docked conformation of compound 16 showing important
amino acid residues

Fig. 2 Docked conformation of compound 11 showing important
amino acid residues

Fig. 1 Docked conformation of compound 36 showing important
amino acid residues
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substituent present at the R2 position has formed a bump
with the FAD co-enzyme present in the AHAS enzyme.
Thus the inhibitor molecule cannot fit itself well into the
pocket of the enzyme. Again, the activity of this inhibitor is
low. This results also suggests that FAD plays a crucial role
in the inhibitor–enzyme interaction.

Validation of the docking process

The ligand binding process was validated by docking the
most active inhibitor molecule (compound 11) with the
enzyme AHAS using other two docking tools, i.e. LibDock
and CDOCKER, available in the Receptor–Ligand Inter-
actions section available under Discovery Studio 2.0. The
docked geometries of the most active compound obtained
using the LibDock and CDOCKER tools are shown in
Figs. 7 and 8, respectively. The docked geometries obtained
from the latter two docking tools were very similar to that
obtained from the LigandFit tool of Discovery Studio 2.0.
The important amino acids (Met351, Arg377, Met570 and
Val571) in the docked geometries obtained with LibDock
and CDOCKER interact with the ligand in a pattern very
similar to that determined with LigandFit. This supports the

view that our docking process is robust and reproducible.
We performed another type of validation study to show the
robustness of our docking process: we docked metsulfuron
methyl (the original co-crystallised ligand) with the AHAS
enzyme and then compared the docked geometry with that
of the original crystal structure (E.C. 2.2.1.6, 1YHY.pdb)
obtained from PDB. This analysis showed that the amino
acid residues present close to the inhibitor molecule are the
same as those in the enzyme-inhibitor complex in PDB,
thus suggesting that our docking process is reproducible.

Molecular shape analysis

We performed 3D-QSAR to obtain information about the
effect of shape, the spatial arrangement of atoms in 3D
space, and the charge distribution of substituents on the
biological activity. This study was conducted using MSA
descriptors along with additional descriptors such as spatial
and electronic parameters and a few structural descriptors.
Figure 9 shows the aligned geometry of the training set
compounds used in MSA.

Fig. 7 Docked conformation of compound 11 (most active) showing
the important amino acid residues (obtained using the LibDock
algorithm)

Fig. 6 Docked conformation of compound 6 showing important
amino acid residues

Fig. 5 Docked conformation of compound 18 showing important
amino acid residues

Fig. 4 Docked conformation of compound 24 showing important
amino acid residues
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Initially, we performed MSA by generating conformers
using Cerius 2 version 4.10 software as detailed in Materials
and methods. Models were generated with shape, spatial and
electronic descriptors using GFA with spline option as the

statistical tool. The mutation probability was kept at 50% with
5,000 iterations. In the case of GFA linear technique, the
following best equation was obtained with acceptable LOO
internal variance (Q2) and external predicted variance (Rpred

2).

pKi ¼ 5:494 �1:099ð Þ � 0:003 �0:0003ð ÞPMI mag þ 0:031 �0:004ð ÞDIFFV
�0:680 �0:120ð Þ < 9� HBondacceptor > þ0:432 �0:089ð ÞShadow Xlength

nTraining ¼ 34;R2 ¼ 0:890;R2
a ¼ 0:875;F ¼ 58:7 df 4; 29ð Þ;Q2 ¼ 0:847;

PRESS ¼ 7:593; nTest ¼ 11;R2
pred ¼ 0:785; r2 ¼ 0:718; r20 ¼ 0:713; r2m ¼ 0:667:

ðM1Þ

The above model could explain 87.5% of the variance
(adjusted coefficient of variation). The LOO-predicted variance
was found to be 84.7%. The predictive potential of this model
was determined by predicted R2 for the test set compounds,
and was found to be 0.785. The squared correlation
coefficient between the observed and predicted activity of
the test set compounds was 0.718. The squared correlation
coefficient between the observed and predicted activity of the
test set compounds, setting intercept to zero, was 0.713.

Using the standardised variable matrix for regression, the
significance level of the descriptors was found to be of the
order: PMI_mag, DIFFV, <9-HBondacceptor> and Shad-
ow_Xlength. PMI_mag is the moment of inertia, the
resultant of the moment of inertia of three axes that are
calculated for a series of straight lines through the centre of
mass. These are associated with the principal axes of the
ellipsoid. PMI_mag makes an unfavourable contribution
towards herbicidal activity. This can be explained by
compounds 9–11. All these compounds have the same
substituent (–COOEt) at the R1 position. Compound 9 has
ethoxy methyl (–CH2OC2H5) and bromo (–Br) at the R2

and R3 positions, respectively. Thus the value of PMI_mag
is high (due to the larger substituents) in compound 9. This
may reduce the herbicidal activity. In compounds 10 and 11
the R1, R2, and R4 substituents are the same but compound
10 has a bromo (–Br) substitution at R3 position whereas
that position in compound 11 is unsubstituted. Thus the
value of PMI_mag is lower in the case of compound 11 and
it possesses greater herbicidal activity (9.20). This suggests
that small substituents at the R3 position enhance AHAS
inhibitory activity.

DIFFV is the difference between the volume of the
individual molecule and the volume of the shape reference
compound. It makes a favourable contribution towards
herbicidal activity, which is directly proportional to the
volume of the compounds. This is illustrated by compounds
1 and 8, which differ in only one substitutional feature at
the R1 position. Compound 1 has a chloro (–Cl) substitu-
tion at the R1 position and compound 8 has an ethyloxy
carbonyl (–COOEt) substitution in that location. Thus, the
volume of compound 1 is lower than that of compound 8.
Thus compound 8 possesses higher AHAS inhibitory

Fig. 9 Aligned geometry of the training set members used in
molecular shape analysis (MSA)

Fig. 8 Docked conformation of compound 11 (most active) showing
the important amino acid residues (obtained using the CDOCKER
algorithm)
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activity. This suggests that, for better herbicidal activity,
bulky substituents are required at the R1 position.

HBondacceptor is the number of hydrogen bond acceptor
atoms or groups present in a molecule. However, in the
above model, it is present as a spline term and the negative
coefficient of this term suggests that if the number of the
hydrogen bond acceptors is less than 9, this has an
unfavourable effect on AHAS inhibitory activity. An
increase in the number of electronegative atoms may
enhance the hydrogen bond acceptor count. This is illustrat-
ed by compounds 1 and 11. In the case of compound 1,
there are fewer electronegative atoms than in compound 11.
Thus compound 1 possesses less herbicidal activity than
compound 11. The above parameter suggests that the
presence of a large number of electronegative atoms in a
molecule may enhance AHAS inhibitory activity.

Shadow_Xlength is the length of a molecule in the direction
of the x-axis. This descriptor makes a favourable contribution
toward activity as evidenced by the positive regression
coefficient, and represents the length of the substituent present
at the R2 position. This can be illustrated by compounds 9 and
15. All three substituents at the R1, R3 and R4 positions are
same in both the compounds. But the change in length of the
substitution at the R2 position may affect AHAS inhibitory
activity. Compound 9 contains an ethoxymethyl (–CH2OEt)
group at the R2 position and compound 15 contains a
vinylcarbonyloxymethyl group (–CH2OOCCH=CH2) at this
position. Thus the value of Shadow_Xlength is higher in the
case of compound 15. As a consequence, the herbicidal
activity of compound 15 is greater than that of compound 9.

We further performed MSA using docked conformers
obtained from Discovery Studio 2.0. Figure 10 shows the

aligned geometry of docked conformers of the training set
compounds used in MSA. The model was generated with
shape, spatial and electronic descriptors using GFA with
spline option as the statistical tool. The mutation probability
was kept at 50% with 5,000 iterations. In the case of GFA
linear technique, the following equation was obtained with
acceptable LOO internal variance (Q2) and external
predicted variance (Rpred

2).

pKi ¼ 7:361 �4:648ð Þ þ 2:153 �0:592ð ÞRadofGyration� 0:002 �0:001ð ÞPMI mag
�5:758 �1:984ð ÞDensity� 0:006 �0:001ð Þ < Jurs WNSA 2þ 728:635 >

nTraining ¼ 34;R2 ¼ 0:837;R2
a ¼ 0:815;F ¼ 37:3 df 4; 29ð Þ;Q2 ¼ 0:776;

PRESS ¼ 11:119; nTest ¼ 11;R2
pred ¼ 0:813; r2 ¼ 0:853; r20 ¼ 0:812; r2m ¼ 0:682:

ðM2Þ

Using the standardised variable matrix for regression, the
significance level of the descriptors was found to be of the
order: RadofGyration, PMI_mag, Density and <Jurs_WNSA_
2+728.635>. RadofGyration is a measure of the size of an
object, a surface, or an ensemble of points. It is calculated as
the root mean square distance of the objects’ parts from either
its centre of gravity or an axis. This can be calculated by the
following equation:

RadofGyration ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX x2i þ y2i þ z2ið Þ

N

� �s
ð4Þ

Here, N is the number of atoms and x, y, and z are the
atomic coordinates relative to the centre of mass. It makes a
favourable contribution towards herbicidal activity as
evidenced by the positive regression coefficient. This
reflects the fact that the shape of the molecules plays an
important role in herbicidal activity. For better herbicidal
activity, the molecules should have an asymmetrical shape,
i.e. an increase in substituent length of any one direction
may enhance AHAS inhibitory activity. This can be
illustrated by compounds 12 and 13. There are fewer atoms
present in compound 12 than in compound 13, thus the
numerical value of radius of gyration is higher in

Fig. 10 Aligned geometry of docked conformers of the training set
members used in MSA
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compound 12 than in compound 13. Due to the higher
value of radius of gyration, compound 12 possesses greater
herbicidal activity.

Density is a 3D spatial descriptor that is defined as the
ratio of molecular weight to molecular volume. The density
reflects the types of atoms and how tightly they are packed
in a molecule. It makes an unfavourable contribution to
AHAS inhibitory activity. For better herbicidal activity,
lower molecular weight and higher molecular volume
would be required. This is illustrated by compounds 11
and 12. The molecular weight of compound 11 is less than
that of compound 12, and the molecular volume of
compound 11 is greater than that of compound 12. Thus,
the value of Density is higher in compound 12 than in
compound 11. As a consequence, compound 11 has higher
activity. There is another example to support this position.
The molecular weight of compound 24 is much higher than
that of compound 26, while the molecular volume of
compound 24 is only a bit lower than that of compound 26.
As the weight:volume ratio is much higher for compound
24, the density of compound 26 is lower than that of
compound 24. Thus the AHAS activity of compound 26 is
higher than that of compound 24. The molecular weight of
compound 24 is higher due to the presence of the bromo
(–Br) substitution at the R3 position.

Jurs_WNSA_2 is the surface weighted charged partial
negative surface area. It can be calculated from the total
charge weighted negative surface area (PNSA_2) multiplied
by the total molecular solvent-accessible surface area
(SASA) divided by 1,000.

Jurs WNSA 2 ¼ PNSA 2*SASA

1000
ð5Þ

But, in the above model, Jurs_WNSA_2 is present as a
spline term and its negative coefficient reflects that if the
value of Jurs_WNSA_2 is greater than −728.635 then it
makes an unfavourable contribution towards AHAS inhibi-
tory activity. This implies that an increase in the total charge
weighted negative surface area and total SASA will enhance
activity. For better herbicidal activity, both the negatively
charged surface area as well as the total surface area should
be higher. This can be illustrated by compounds 11 and 36.
The total charge weighted negative surface area of com-
pound 11 is lower than that of compound 36, and the total
SASA is higher in the case of compound 11. Thus, the value
of Jurs_WNSA_2 in compound 11 (−763.873) is lower than
that of compound 36 (−397.631). As a consequence, the
AHAS inhibitory activity of compound 11 is much greater
than that of compound 36. This occurs due to the presence of
fewer electronegative atoms in compound 36 compared to
compound 11. Negative charge distributed over a large
surface area may enhance the herbicidal activity.

Additional external validation test

In the early 1980s, Unger and Hansch [34] stated that
“...without a quality perspective, one can generate statistical
unicorns, beasts that exist on paper but not in reality”.
Validation of QSAR models is a very important task. In the
present paper, the models were subjected to a test for criteria
of external validation as suggested by Golbraikh and Tropsha
[35]. To find the predictive potential of the models, squared
correlation coefficient values between the observed and
predicted values of the test set compounds with intercept
(r2) and without intercept (r20 ) were calculated. Interchange
of the axes gives the value of r′20. According to Golbraikh
and Tropsha [35], models are considered acceptable if they
satisfy all of the following conditions:

(1) Q2>0.5
(2) r2>0.6
(3) r2 � r20ð Þ=r2 < 0:1 or r2 � r020ð Þ=r2 < 0:1
(4) 0.85 ≤ k ≤ 1.15 or 0.85 ≤ k′ ≤ 1.15

When the observed values of the test set compounds (y-axis)
are plotted against the predicted values of the compounds
(x-axis) setting the intercept to zero, the slope of the fitted line
gives the value of k. Interchange of the axes gives the value
of k′. A list of values of different validation parameters
defined above for different models is given in Table 4.

It has been shown previously [36] that Rpred
2 may not be

sufficient to indicate the external predictivity of a
model. The value of R2

pred is controlled mainly byP
Yobs testð Þ � Y training

� �2
, i.e. the sum of squared differences

between observed values of test set compounds and the mean
observed activity values of the training data set. Thus, R2

pred

may not truly reflect the predictive capability on a new
dataset. Furthermore, the squared regression coefficient (r2)
between observed and predicted values of the test set
compounds does not necessarily mean that the predicted
values are very near to observed activity (despite maintaining
an overall good intercorrelation, there may be considerable
numerical difference between the values). So, for better
external predictive potential of the model, a modified
r2 (r2m(test)) was introduced via the following equation [36]:

r2m testð Þ ¼ r2* 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r20

q� �
ð6Þ

Table 4 External validation criteria of all the models according to
Golbraikh and Tropsha [35]. GFA Genetic function approximation

Equation no. Model type r2 Q2 (r2−r20)/r2 k

M1 GFA- spline
(undocked)

0.718 0.847 0.007 1.012

M2 GFA- spline
(docked)

0.853 0.776 0.047 0.951
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In Eq. 6, r0
2 is the squared correlation coefficient between

the observed and predicted values of the test set compounds
with the intercept set to zero. The value of r2m(test) should be
greater than 0.5 for an acceptable model. The values of
r2m(test) for the different models is reported in Table 5.

Initially, the concept r2m was applied only to the test set
prediction [36], but it can equally well be applied to the
training set if one considers the correlation between observed
and LOO predicted values of the training set compounds
[37]. More interestingly, this can be used for the whole set if
LOO-predicted values for the training set and predicted
values of the test set compounds are considered. The
advantages of such consideration are: (1) unlike external
validation parameters (R2

pred, etc.), the r2m(overall) statistic is
based not only on a limited number of test set compounds,
but includes prediction for both test set and training set
(using LOO predictions) compounds. Thus, this statistic is
based on prediction of a comparably large number of
compounds. In many cases, the size of the test set is quite
small, and regression-based external validation parameters
may be less reliable and highly dependent on individual test
set observations. In such cases, the r2m(overall) statistic may be
advantageous. (2) In many cases, comparable models are
obtained, with some models showing comparatively better
internal validation parameters and others showing relatively
superior external validation parameters. This may create
problems in selecting the final model. The r2m(overall) statistic
may be used for selection of the best predictive model from
among comparable models. For the present QSAR study, we
determined r2m values for both training (based on LOO-
predicted values) and test sets and also for the whole set of
reported models (results shown in Table 5).

When different models having different numbers of
predictor variables are compared, it may be very difficult to
determine which is the best model as rm

2 does not consider
the number of predictor variables used. To solve this
problem, we developed another parameter [r2m(overall)

(adjusted)] in a manner similar to the adjusted R2 (R2
a). This

newly introduced parameter can be calculated as follows:

r2m overallð Þ adjustedð Þ ¼
n� 1ð Þ*r2m overallð Þ � p

n� p� 1
ð7Þ

In Eq. 7, n is the total number of compounds being
predicted and p is the number of predictor variables. The
values of the new parameter [rm

2
(overall)(adjusted)] for

Eqs. M1 and M2 are shown in Table 5.

Process randomisation

Robustness of the models relating AHAS inhibitory activity
with selected descriptors was judged by randomisation (Y-
randomisation) of the model development process. The test T
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was done by repeatedly scrambling the activity values to
generate QSAR models from the whole pool of descriptors
and then comparing the resulting scores with the score of
the original QSAR model generated from non-randomised
activity values. In each case, the average correlation
coefficient (Rr) of randomised models were significantly
less than the correlation coefficient (R) of the non-
randomised model. The results of process randomisation
are shown in Table 6.

Model randomisation

Further statistical significance of the relationship between
AHAS inhibitory activity and descriptors was checked by
randomisation test (Y-randomisation) of the models. This
technique ensures the robustness of the model. The values
of dependent variables were scrambled randomly and new
QSAR models were developed keeping the independent
variable matrix unchanged. The randomisation test for the
models was performed at 99% confidence level. The test
was performed by shuffling the AHAS inhibitory activity
values and the average value of the correlation coefficient
(Rr) of random models was calculated. For an acceptable
QSAR model, the average correlation coefficient (Rr) of
randomised models should be less than the correlation
coefficient (R) of the non-randomised model.

No clear-cut recommendation was found in the literature
for the desired difference between the average correlation
coefficient (Rr) of randomised models and the correlation
coefficient (R) of a non-randomised model. We used the
parameter R2

p [38], which penalises the model R2 for the
small difference between squared mean correlation coeffi-
cient (R2

r) of randomised models and the squared correlation
coefficient (R2) of a non-randomised model. The above-
mentioned novel parameter can be calculated by the
following equation:

R2
p ¼ R2*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

r

q
ð8Þ

This novel parameter R2
p ensures that the models

developed are not obtained by chance. For an acceptable
QSAR model, the value of R2

p should be greater than 0.5.
The values of R2, R2

r and R2
p based on model randomisation

for different models are reported in Table 5. The values of

R2, R2
r and R2

p based on process randomisation for different
models are reported in Table 6.

Comparison with previous work

Xi et al. [14] worked on the same dataset and performed a
DFT-based QSAR study of sulfonylurea analogues with
herbicidal activity using quantum chemical charge descrip-
tors along with the molecular volume of the electron cloud.
They developed models from training set compounds and
used these to predict the activity of test set compounds. The
predictive potential (R2

pred, not reported by Xi et al. [14]) of
their best model (0.573) is somewhat lower than that of our
models (Table 5). As the main objective of QSAR is to
predict the activity of new sets of compounds, our models
are of more potential practical use than the previous model.
In addition, we also performed a docking study of all 45
AHAS inhibitor molecules.

Overview and conclusions

In the present work, we performed docking of 45 AHAS
inhibitors into the active site of AHAS enzyme. We also
performed QSAR studies for the compounds using three
dimensional (shape, spatial and electronic) descriptors
along with a few structural descriptors. The whole dataset
(n=45) was divided into a training set (75% of the dataset)
and a test set (remaining 25%) on the basis of the K-means
clustering technique. Models developed from training set
compounds were used to predict the activity of test set
compounds. A comparison of statistical quality of different
models was given in Table 5.

The docking study showed that Met351, Asp375,
Arg377, Gly509, Met570 and Val571 are the important
residues present at the active site, and that these are the
main contributors to the receptor–ligand interaction. These
amino acid residues form a pocket to which the inhibitors
bind. It has been observed that, for better AHAS inhibitory
activity, four amino acid residues (Met351, Arg377,
Met570 and Val571) should optimally interact with the
substituted sulfonylurea derivatives. The co-enzyme FAD
plays a major role in the receptor binding of the inhibitors.
The inhibitors form hydrogen bonds with some of the

Table 6 Results of randomisation test applied to the model development process

Equation no. Type of descriptors Model type R2 R2
r R2

p

M1 Shape+Spatial+Electronic+Structural GFA-splinea 0.890 0.222 0.727

M2 Shape+Spatial+Electronic+Structural GFA-splineb 0.837 0.419 0.541

a Using conformers generated by conformational analysis
b Using docked conformers
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amino acid residues to bind properly with the enzyme.
However, steric bumps have a detrimental effect on AHAS
inhibition activity. As compounds 11, 12 form intramolec-
ular or intermolecular hydrogen bonds, the AHAS inhibi-
tory activity of these compounds is very high. In contrast,
compounds 35, 36 and 38 form steric bumps (either
intermolecular or intramolecular), and their AHAS inhibi-
tory activity is consequently lower.

On the other hand, models generated from MSA reflect
the importance of structural (HBondacceptor), shape
(DIFFV) and spatial (RadofGyration, PMI_mag, Shadow_X-
length, Density and Jurs_WNSA_2) descriptors. According
to the internal variance (Q2=0.847), Eq. M1 is the best
model. However, if we consider external predictive variance,
Eq. M2 (R2

pred=0.813) is better To avoid this type of
contradiction, we developed a novel parameter (r2m(overall))
[36]. Again, according to both r2m(overall), and the newly
introduced parameter r2m(overall)(adjusted), Eq. M1 is the best
model, giving values of 0.694 and 0.663, respectively.
Considering the randomisation test as a validation criterion,
Eq. M1 (0.788) is the best one according to the newly
introduced parameter (R2

p). Shape parameter shows that a
bulky substitution at R1 position may enhance AHAS
inhibitory activity. The charged surface area descriptors
suggest that negative charge distributed over a large surface
area may enhance activity. Structural parameters support the
charged surface area descriptors in that, for better activity,
the number of electronegative atoms present in a molecule
should be high. The spatial descriptors show that, for better
activity, the molecules should possess bulky substituents and
small substitution at the R2 and R3 positions, respectively.

The results of the present study may be useful in the design
and development of novel compounds having better AHAS
inhibitory activity with the potential to be used against the
unwanted herbs andweeds that reduce agricultural productivity.
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